Multiple-point equalization of room transfer functions by using common acoustical poles
نویسندگان
چکیده
A multiple-point equalization filter using the common acoustical poles of room transfer functions is proposed. The common acoustical poles correspond to the resonance frequencies, which are independent of source and receiver positions. They are estimated as common autoregressive (AR) coefficients from multiple room transfer functions. The equalization is achieved with a finite impulse response (FIR) filter, which has the inverse characteristics of the common acoustical pole function. Although the proposed filter cannot recover the frequency response dips of the multiple room transfer functions, it can suppress their common peaks due to resonance; it is also less sensitive to changes in receiver position. Evaluation of the proposed equalization filter using measured room transfer functions shows that it can reduce the deviations in the frequency characteristics of multiple room transfer functions better than a conventional multiplepoint inverse filter. Experiments show that the proposed filter enables 1–5 dB additional amplifier gain in a public address system without acoustic feedback at multiple receiver positions. Furthermore, the proposed filter reduces the reflected sound in room impulse responses without the pre-echo that occurs with a multiple-point inverse filter. A multiple-point equalization filter using common acoustical poles can thus equalize multiple room transfer functions by suppressing their common peaks.
منابع مشابه
Interpolation and Extrapolation of Room Transfer Functions Based on Common Acoustical Poles and Their Residues
We propose a new method of modeling a room transfer function (RTF) that uses common acoustical poles and their residues. The common acoustical poles correspond to the resonance frequencies (eigenvalues) of the room, and their residues are composed of the eigenfunctions of the source and receiver positions in the room. Because the common acoustical poles do not depend on the source and receiver ...
متن کاملCommon-acoustical-pole and residue model and its application to spatial interpolation and extrapolation of a room transfer function
A method is proposed for modeling a room transfer function (RTF) by using common acoustical poles and their residues. The common acoustical poles correspond to the resonance frequencies (eigenfrequencies) of the room, so they are independent of the source and receiver positions. The residues correspond to the eigenfunctions of the room. Therefore, the residue, which is a function of the source ...
متن کاملCommon acoustical pole and zero modeling of room transfer functions
Abstruct-A new model for a room transfer function (RTF) by using common acoustical poles that correspond to resonance properties of a room is proposed. These poles are estimated as the common values of many RTF’s corresponding to different source and receiver positions. Since there is one-to-one correspondence between poles and AR coefficients, these poles are calculated as common AR coefficien...
متن کاملCommon Acoustical Pole Estimation from Multi-Channel Musical Audio Signals
This paper describes a method for estimating the amplitude characteristics of poles common to multiple room transfer functions from musical audio signals received by multiple microphones. Knowledge of these pole characteristics would make it easier to manipulate audio equalizers, since they correspond to the room resonance. It has been proven that an estimate of the poles can be calculated prec...
متن کاملCommon-acoustical-pole and zero modeling of head-related transfer functions
Use of a common-acoustical-pole and zero model is proposed for modeling head-related transfer functions (HRTF’s) for various directions of sound incidence. The HRTF’s are expressed using the common acoustical poles, which do not depend on the source directions, and the zeros, which do. The common acoustical poles are estimated as they are common to HRTF’s for various source directions; the esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 5 شماره
صفحات -
تاریخ انتشار 1997